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Abstract

This paper shows that repeated cross-section data with multiple skill measures
(one continuous and repeated) available each period are sufficient to nonparametrically
identify the evolution of skill returns and cross-sectional skill distributions. With panel
data and the same available measurements, the dynamics of skills can also be identified.
Our identification strategy motivates a multi-step nonparametric estimation strategy.
We further show that if any continuous repeated measurement is shown to be linear in
skills, a much simpler GMM estimator can be used.

Using HRS data on men ages 52+ from 1996-2016, we show that one of the available
(continuous and repeated) skill measures is linear in skills and implement our GMM
estimation approach. Our estimates suggest that the returns to skill were fairly stable
from the mid-1990s to the Great Recession, rising thereafter. We document consider-
able differences in skills and lifecycle skill profiles over ages 52–70 across cohorts, with
more recent cohorts possessing lower skills in their mid-50s but experiencing much
weaker skill declines with age. We also document skill differences by education and
race, which are stable across ages and explain roughly one-third and one-half, respec-
tively, of the corresponding differences in wages. We observe substantial differences
in skills for men in their mid-50s choosing to retire at different ages, but no clear ev-
idence of sharp declines in skills surrounding retirement ages. Finally, we show that
individual fixed effects account for more than a third of all skill variation at age 60,
with considerable persistence in year-to-year skill innovations.
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1 Introduction

Despite decades of research on the topic, there remains considerable interest in better

understanding growing inequality in the U.S. and many other developed countries. An

important focus of much of this research has been on the extent to which growing wage

inequality is the result of rising returns to skill (often attributed to skill-biased technological

change) vs. growth in the variance of skills across workers. Due to a lack of direct measures

of skill, researchers are typically forced to make (strong) assumptions about the evolution

of skill distributions or returns, with little external validation or evidence regarding those

assumptions.

This paper establishes nonparametric identification of the returns to skills and cross-

sectional distribution of skills over time given the availability of repeated cross-section data

on wages and at least two skill measurements every period, with at least one continuous skill

measure repeated each period. With longitudinal data, we show that it is also possible to

identify the dynamics of skills (i.e. the distribution of skills in period t conditional on skills

in period t − 1). Our constructive identification strategy suggests a multi-stage estimation

approach, which simplifies considerably if one of the repeated measurements is known to

be linear in skills, something that is straightforward to verify. We use these methods and

longitudinal data from the Health and Retirement Study (HRS) to estimate the evolution

of skill returns and distributions, as well as the dynamics of skills, for men in the U.S. from

1996–2016.

Several distinct literatures in economics aim to distinguish interpersonal differences in

skills from the market-level returns to those skills. For example, the primary objective of

many empirical studies on discrimination is to determine the extent to which race or gen-

der differences in wages, as well as the evolution of those gaps over time, can be explained

by group differences in skill levels.1 Similarly, researchers often attempt to decompose dif-

ferences in the wage returns to schooling across countries (Leuven et al., 2004; Hanushek

and Zhang, 2009) or over time (Heckman et al., 1998; Bowlus and Robinson, 2012) into

differences in worker skill levels (deriving from, e.g., heterogeneous school quality or home

1There are vast literatures on race and gender wage differentials surveyed in Altonji et al. (2012). Among
the most closely related studies on race, see Card and Lemieux (1996); Neal and Johnson (1996), and Chay
and Lee (2000). See Blau and Kahn (1997, 2017) for closely related studies on gender wage gaps.
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environments) and in the wage returns to those skills. Related research has framed the rapid

rise in residual wage inequality (i.e., inequality within narrowly defined demographic groups)

over the past several decades as a combination of changes in the distribution of unmeasured

skills and in their labor market returns (e.g., Juhn et al., 1989; Katz and Murphy, 1992;

Lemieux, 2006; Autor et al., 2008; Lochner et al., 2020).

Skill measurement is a critical challenge in all of these literatures. In most cases (e.g.

studies using Census data or data from the Current Population Surveys, CPS), only a crude

proxy or correlate of skill is available (e.g., educational attainment, per-pupil spending when

young, age), especially when researchers are interested in studying inequality across long

time periods. In these cases, skills are often equated with available measures like education

or labor market experience. Other studies explicitly aim to estimate the role of unmea-

sured skills. To this end, Juhn et al. (1989) assume that the distribution of these skills

remained constant over the period they study, attributing all growth in the variance of log

wage residuals to an increase in the return to unobserved skill. Lemieux (2006) instead

assumes that the variance of skills within narrowly defined observable groups (e.g., within

age-education-race categories) remained unchanged over time, allowing for changes in the

distribution of skills through changes in the composition of the workforce (by age, education,

and race). He finds that a sizeable fraction of the growth in residual inequality can be traced

to changes in the distribution of skills caused by the aging and growing education of the

population. Using longitudinal data on wages from the Panel Study of Income Dynamics

(PSID), Lochner et al. (2020) relax the assumption of invariant within-group distributions,

assuming instead that variation in skill growth among older workers is idiosyncratic. Their

estimates suggest declining returns to unobserved skill over the late 1980s and 1990s, while

the growth in residual wage inequality is instead explained by growth in the variance of skills

(due to growing variation in skill growth). Clearly, assumptions about the evolution of skill

distributions have important implications for the conclusions one draws about driving forces

underlying rising wage inequality.2

2In related research, Card and Lemieux (1996) and Chay and Lee (2000) use CPS data to study the
extent to which changes in skill gaps and the returns to skill can explain the evolution of black – white
wage differentials. Card and Lemieux (1996) consider a single skill model (composed of both observed
and unobserved components) with restrictions on the evolution of skills over time, while Chay and Lee
(2000) consider a model with differently priced observed and unobserved skills, placing restrictions on the
distribution of unobserved skills within observable groups over time.
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In some cases, researchers have used more specialized data sets like the National Lon-

gitudinal Surveys of Youth (NLSY), which contain cognitive test scores as direct measures

of skill. Using the 1979 Cohort of the NLSY, Neal and Johnson (1996) demonstrate that

differences in adolescent cognitive achievement (as measured by the Armed Forces Qualifying

Test, AFQT) can, by themselves, explain the sizeable differences in wages between young

black and white men in the U.S.3 Several studies have also used the NLSY cohorts to study

the evolution of inequality since the 1980s. For example, Herrnstein and Murray (1994)

argue that the U.S. has become more meritocratic based on sharply increasing wage returns

to AFQT. Others have used AFQT measures in an effort to disentangle whether the growing

differences in earnings by educational attainment reflect rising returns to schooling or rising

returns to cognitive ability (Heckman and Vytlacil, 2001; Taber, 2001; Castex and Dechter,

2014).4 Deming (2017) exploits other non-cognitive measures in the NLSY, estimating that

the returns to social skills have risen since the 1980s.

It is noteworthy that commonly used data sources with direct skill measures do not typ-

ically contain the same measures over time for the same individuals. For example, cohorts

of the NLSY contain AFQT scores measured only once, during adolescence. Thus, studies

using the NLSY estimate the effects of adolescent cognitive achievement, rather than con-

temporaneous skills, on wages later in life. Given the practical challenge of sorting out age

and time effects from only a few birth-year cohorts, studies following individuals over time

from one of the NLSY cohorts cannot determine whether growing wage inequality is driven

by differential lifecycle growth in skills by AFQT or rising returns to skill (Heckman and

Vytlacil, 2001).

Grogger and Eide (1995) and Murnane et al. (1995) address this issue by exploiting data

on cognitive achievement and wages from two separate cohorts (National Longitudinal Study

of the High School Class of 1972, NELS72, and High School and Beyond, HSB). Comparing

the earnings of individuals at the same ages (roughly age 24), their estimates suggest that

both the returns to schooling and cognitive skill rose between 1978 and 1986. However,

3To study differential returns to cognitive achievement across countries at a point in time, Leuven et al.
(2004) and Hanushek and Zhang (2009) use international data from the International Adult Literacy Survey
(IALS) while Hanushek et al. (2015) exploits data from an expanded set of countries from the Programme
for International Assessment of Adult Competencies (PIAAC).

4In related work, Altonji et al. (2012) study changes in the distribution of skills (overall and by race and
gender) for two NLSY cohorts using AFQT scores, education, and other individual and family characteristics.
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a limitation of both studies is that the cognitive tests (taken during the last year of high

school), while similar, were not the same across the two surveys. Thus, any differences in

their mapping to true cognitive skills would be reflected in the estimated returns to skill

over time. Castex and Dechter (2014) improve upon these studies by comparing the wages

of men over ages 18-28 from the 1979 and 1997 Cohorts of the NLSY (born roughly 20

years apart), who took the same AFQT test during adolescence. Their estimates suggest

that the returns to adolescent cognitive achievement declined while the returns to schooling

increased between the 1980s and 2000s.5 They also find that log wage differences by AFQT

were quite similar upon labor market entry across the two cohorts, with log wage gaps by

AFQT increasing with experience for the 1979 Cohort but not the 1997 Cohort. Thus, the

difference in estimated returns to AFQT across cohorts only appeared after individuals had

spent several years in the labor market.

While this cross-cohort approach to estimating changes in the returns to skills over

time requires weaker assumptions than studies following a single cohort over time, it is

not assumption-free. Because most respondents took the AFQT during adolescence, one

can only interpret changes in wage returns to cognitive skills at older ages as changes in

the returns to skill over time if the evolution of skills between the age of the test and the

age at which wages are compared was the same across cohorts.6 This would be violated

if, for example, variation in early lifecycle skill growth changed. Indeed, the finding that

log wage gaps by AFQT evolved differently with work experience for the two NLSY cohorts

suggests that early skill growth may have differed between them. Alternatively, the returns

5In related work, Deming (2017) uses the 1979 and 1997 Cohorts of the NLSY to estimate changes in the
wage returns to social skills over time. Because the same measures of social skills are not available for both
NLSY cohorts, Deming (2017) works with normalized measures of social skills (measured during adolescence),
effectively assuming identical distributions (and measurement quality) across the cohorts. Thus, the rising
returns to social skills he estimates could also reflect greater variation in social skills (or more precise
measurements) for the more recent cohort. Edin et al. (2017) exploit administrative data in Sweden that
contain consistent cognitive and non-cognitive measures collected for men entering the military at ages 18-
19 for cohorts born between 1951 and 1975. They estimate that the return to non-cognitive skill roughly
doubled from 1992 to 2013, while the return to cognitive skill rose in the 1990s but fell in the 2000s.

6The same caveat applies to studies by Grogger and Eide (1995) and Murnane et al. (1995), who use data
from NELS72 and HSB, and to Edin et al. (2017), who use administrative data from Sweden. Additionally,
the fact that NLSY respondents took the AFQT test at different ages across the cohorts requires adjustments
based on implicit assumptions regarding rank stability of cognitive scores across testing ages. Of course, test
scores measured at age 22 for the oldest in the 1979 Cohort are likely to be much more strongly related to
cognitive skills at ages 18-28 than are test scores measured at age 12 for the youngest in the 1997 Cohort.
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to cognitive skill may have evolved differently in the 1980s vs. 2000s, which cannot be easily

distinguished from differential lifecycle skill growth patterns for the two cohorts.

Despite any limitations, these cohort comparison studies provide some of the most con-

vincing evidence on changes in the returns to cognitive skills over time. Yet, they only

offer, at best, a few snapshots for the U.S.: Grogger and Eide (1995) and Murnane et al.

(1995) find that the returns to cognitive ability rose between 1978 and 1986, while Castex

and Dechter (2014) estimate that the returns declined between the 1980s and 2000s. These

studies do not tell us anything about the 1960s and early 1970s or the most recent decade.

Nor do they inform us as to when the sizeable decline in estimated returns occurred between

the 1980s and 2000s. Yet, these are periods of considerable debate in the literature on log

wage residual inequality and the evolution of returns to skill (Juhn et al., 1989; Katz and

Murphy, 1992; Lemieux, 2006; Autor et al., 2008; Lochner et al., 2020).

Although we cannot comment on earlier time periods, we use biennial data from 1996-

2016 HRS to estimate the evolution of returns to skill and skill distributions over this more

recent period. Unlike previous studies, our data contain measures of wages and scores from

the same cognitive tests repeated every other year. As a result, our approach requires

no assumptions on skill distributions nor their dynamics. Instead, our key identification

assumption is that the measurement function for at least one continuous repeated test (taken

at ages 52+) is identical over time (i.e., the mapping between skills and expected individual

test scores is time invariant). We further show that our use of panel data enables us to

identify the lifecycle dynamics of skills under very general conditions.

Our estimates suggest that the returns to (cognitive) skill were relatively stable over the

late 1990s and early 2000s but rose significantly after the Great Recession. While these

estimates are noisy, they are roughly consistent with the patterns estimated by Lochner

et al. (2020) using data from the PSID.

Our results also intersect with a broader literature studying cognitive skills late in life;

although, this literature typically estimates latent skills (or factors) derived only from cogni-

tive tests without linking (or anchoring) those skills to wages. By incorporating wages in our

analysis, we are able to describe how skills, measured in log wage units, evolve for individuals

ages 52-70. We document considerable variation in skills among individuals in their early-

to mid-50s across cohorts (with much higher skills among those from earlier birth cohorts),
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but these differences are largely dissipated by the time individuals reach their early 60s as

earlier cohorts experienced much faster declines in skill than did later cohorts. Indeed, there

is little evidence of skill depreciation prior to age 63 (when last observed) among the cohort

born 1954-1959.

Consistent with several studies using the HRS and similar data in other countries, we show

that late-life cognitive performance differs significantly across education groups (Cagney and

Lauderdale, 2002; Mazzonna and Peracchi, 2012) and racial groups (Zsembik and Peek, 2001;

Karlamangla et al., 2009; Castora-Binkley et al., 2015). Our estimates suggest that, among

older workers, cognitive skill differences are quite similar across ages and explain roughly

one-third of the education gaps and nearly half of the race gaps in log wages.7

Prior research has also shown that retirement is negatively correlated with cognition

(Adam et al., 2007); although, self-selection into retirement has posed challenges in estimat-

ing the causal relationship between retirement and cognition.8 We make no effort to attribute

causality; instead, we simply show lifecycle skill profiles from ages 52-70 for workers choos-

ing to retire at different ages. Our results suggest that age 55 skill levels are increasing in

retirement age, with those retiring at age 65 or older possessing roughly 15% more skills

than those retiring prior to age 55. We see no evidence of sharp declines in cognitive skills

surrounding retirement ages, with skills relatively constant through age 60 for those retiring

prior to age 55 and skills declining almost linearly from ages 52 to 70 for those retiring over

ages 55-64. To the extent that retirement does lead to cognitive decline, our results suggest

that its impacts are relatively small or largely offset by other lifecycle forces.

Finally, we show that skills are quite persistent, with individual fixed effects accounting

for more than a third of all skill variation at age 60. Year-to-year skill innovations are also

persistent with an autocorrelation of 0.93.

This paper proceeds as follows. Section 2 describes our model of skill dynamics, the

7See Card (1999) and Heckman et al. (2006) for comprehensive surveys of wage differences by education.
Neal and Johnson (1996) show that adolescent skill gaps can explain much of the early-career differences in
wages by race.

8Several studies use exogenous policy variation, such as eligible retirement ages and pension policies, as
instruments to identify the causal effects, producing mixed findings. Some of these studies estimate significant
negative effects of retirement on cognition (Rohwedder and Willis, 2010; Bonsang et al., 2012; Mazzonna
and Peracchi, 2012, 2017), while others find no causal effect (Coe and Zamarro, 2011; Coe et al., 2012). Still
others estimate heterogeneous effects across different occupations (Mazzonna and Peracchi, 2017) or across
individuals retiring early vs. at the statutory age (Celidoni et al., 2017).

7



relationship between skills and wages, and other skill measurement functions. We discuss

identification and estimation of skill returns, measurement functions, skill distributions, and

the dynamics of skills. Section 3 describes the HRS data we use in estimation, while Section 4

presents our estimation results. We offer concluding thoughts in Section 5.

2 Methodology

In this section, we provide a general model of the evolution of skills and log wages. Since

we focus on older workers (ages 50+), we assume skills evolve exogenously, reflecting growth

and/or depreciation. With panel data on both log wages and test-based measures of skills,

we describe identification and estimation of the distribution of skills and their dynamics,

the evolution of skill return functions over time, and the mapping between skills and their

test-based measurements.

2.1 Model

Let lnWi,a,t be the log wage for individual i at age a in year t and Ti,j,a,t reflect skill test

score measure j = 1, . . . , J . We consider the following specification for log wages and skill

measures:

lnWi,a,t = γt + λtθi,a,t + εi,a,t,

Ti,1,a,t = τ1(θi,a,t) + ηi,1,a,t,

Ti,j,a,t = Gj(τj(θi,a,t) + ηi,j,a,t), for j = 2, . . . , J,

(1)

where θi,a,t denotes unobserved skill, λt denotes “return” to skill in period t, εi,a,t and ηi,j,a,t

are idiosyncratic non-skill shocks to wages and test measurement errors, respectively, and

τj(·) is a strictly increasing, age- and time-invariant measurement function that maps un-

observed skill to cognitive measure j combined with a weakly increasing function Gj(·) for

j = 2, . . . , J . Notice that the model allows ordered discrete measures for j = 2, . . . , J if Ti,1,a,t

is continuous. Observations are i.i.d. over individual i for any (j, a, t). For any individual i,

we assume that (θi,a,t, εi,a,t, ηi,j,a,t) are mutually independent for all test measures j and that

each of these variables is also independent of past and future realizations of the other two

variables. The idiosyncratic measurement error ηi,j,a,t is independent over j and t. Since a

and t move together for each individual, ηi,j,a,t is also independent over a, but it need not be
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identically distributed over ages or time. We normalize λt∗ = 1 for some year t∗, which effec-

tively measures skills in year t∗ log wage units. We also normalize E(εi,a,t) = E(ηi,j,a,t) = 0

for all (j, a, t). Identification requires no assumptions about the serial dependence structure

for log wage shocks εi,a,t.

Let αa,t ≡ E(θi,a,t) and θ̄i,a,t := θi,a,t − αa,t be the de-meaned skill value. Then, we can

rewrite log wages as follows:

lnWi,a,t = γt + λt(θi,a,t − αa,t + αa,t) + εi,a,t

= γt + λtαa,t + λtθ̄i,a,t + εi,a,t

≡ γ̃a,t + λtθ̄i,a,t + εi,a,t,

where γ̃a,t := γt + λtαa,t. Regressing log wages on interactions of age and time dummies

yields consistent estimates of γ̃a,t and log wage residuals wi,a,t := λtθ̄i,a,t + εi,a,t. We work

with these residuals below to discuss identification and estimation of returns to skill, λt, and

the evolution of skill distributions.

2.2 Identification

Since the continuous measurement function τ1(·) is assumed to be time invariant, ob-

serving this same measurement along with at least one other measurement and log wage

residuals in multiple periods, we can identify the returns to skill each period, nonparametric

(age/cohort-specific) distributions of skills each period, and the dynamics of skills. (We also

obtain nonparametric identification for the measurement function τ1(·) and the correspond-

ing error distributions fη1,a,t for all t.) The identification of skill dynamics is considered both

under a general Markov structure and under the AR(1) structure with a fixed effect term.

Notice that the latter requires identification of each component separately while the former

focuses only on the conditional density of θi,a,t given θi,a−1,t−1. We are careful to note which

features of our model can be identified with repeated cross-section data alone and which

require panel data.

2.2.1 Returns to Skill, Cross-Sectional Skill Distributions, and Measurements

We begin by discussing identification of returns to skill, cross-sectional skill distributions,

test measurement functions, and the distribution of test score measurement errors.
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Consider a normalized age and time pair (a∗, t∗), where λt∗ = 1 and αa∗,t∗ = 0. Let

c∗ = t∗ − a∗ be the corresponding cohort. Applying Theorem 1 in Hu and Schennach

(2008), we can identify the distributions Fθa∗,t∗ (·), Fεa∗,t∗ (·), and Fη1,a∗,t∗ (·), as well as the

measurement function τ1(·) from the joint density of (wi,a∗,t∗ , Ti,1,a∗,t∗ , ..., Ti,J,a∗,t∗) for J ≥ 2.9

Appendix A provides details of the regularity conditions and the identification result.

Now, we consider an arbitrary age and time pair (a, t) 6= (a∗, t∗), rewriting the model as

wi,a,t = θ̃i,a,t + εi,a,t,

Ti,1,a,t = τ̃1,a,t(θ̃i,a,t) + ηi,1,a,t

Ti,j,a,t = Gj

(
τ̃j,a,t(θ̃i,a,t) + ηi,j,a,t

)
for j = 2, . . . , J,

(2)

where θ̃i,a,t := λtθ̄i,a,t = λt(θi,a,t−αa,t) and τ̃j,a,t(x) := τj(x/λt +αa,t). Notice that E(θ̃i,a,t) =

0. Using the same arguments as above, we can identify Fθ̃i,a,t(·), Fεi,a,t(·), Fηi,1,a,t(·), and

τ̃1,a,t(·) from the joint density of (wi,a,t, Ti,1,a,t, ..., Ti,J,a,t).

Knowledge of τ1(·) from (a∗, t∗) and τ̃1,a,t(·) from any other (a, t) identifies λt and αa,t.
10

To see this, consider two points θ1 and θ2 on the support of θ such that θ1 < θ2. Since τ1(·)
is strictly increasing, θ1 < θ2 implies that τ̃1,a,t(θ1) < τ̃1,a,t(θ2). By definition, τ̃1,a,t(θ1) =

τ1(θ1/λt + αa,t) and τ̃1,a,t(θ2) = τ1(θ2/λt + αa,t). Solving this system of equations identifies

λt =
θ1 − θ2

τ−1
1 (τ̃1,a,t(θ1))− τ−1

1 (τ̃1,a,t(θ2))

αa,t =
θ2τ
−1
1 (τ̃1,a,t(θ1))− θ1τ

−1
1 (τ̃1,a,t(θ2))

θ2 − θ1

.

Having identified λt, αa,t, and Fθ̃i,a,t(·), we can then identify Fθi,a,t(θ) = Fθ̃i,a,t(λt(θ − αa,t)).
We emphasize that none of the identification results thus far require panel data. Iden-

tification of the returns to skills and cross-sectional distributions of skills over time can be

achieved with repeated cross-section data. While we have explicitly considered the case with

J ≥ 2 repeated measures each period, it is clear that only a single continuous measurement

must be repeated every period. Other measurements can differ from period to period.11

9We make no effort to separately identify τj(·) from Gj(·) for j = 2, ..., J , which may require additional
assumptions for discrete measures and is not necessary given a single repeated continuous measure Ti,1,a,t.

10Note that identification of λt and αa,t further identifies time effects in log wage equations, γt, from γ̃a,t.
11Even more generally, as long as each period of data contains at least two independent measures, iden-

tification can be achieved with overlapping periods that contain a repeated continuous measurement (e.g.,
one continuous measurement over periods 1 and 2 with a different continuous measurement over periods 2
and 3, etc.). The same continuous measurement need not be available over the entire sample period.

10



2.2.2 Skill Processes: General Approach

Without any additional assumptions on θi,a,t and εi,a,t, we can identify their serial de-

pendence structure with panel data on our continuous measure Ti,1,a,t (given what we have

already identified in Section 2.2.1). To see this, consider two time periods at (a∗, t∗) and (a, t).

For example, a = a∗ + 1 and t = t∗ + 1. Let ϕηi,1,a∗,t∗ ,ηi,1,a,t(x1, x2) := E[exp(−i(x1ηi,1,a∗,t∗ +

x2ηi,1,a,t))] be a characteristic function of (ηi,1,a∗,t∗ , ηi,1,a,t) and define characteristic functions

for other random variables similarly. Note that

ϕTi,1,a∗,t∗ ,Ti,1,a,t(x1, x2) = ϕτ1(θi,a∗,t∗ ),τ1(θi,a,t)(x1, x2) · ϕηi,1,a∗,t∗ ,ηi,1,a,t(x1, x2)

ϕτ1(θi,a∗,t∗ ),τ1(θi,a,t)(x1, x2) =
ϕTi,1,a∗,t∗ ,Ti,1,a,t(x1, x2)

ϕηi,1,a∗,t∗ ,ηi,1,a,t(x1, x2)

=
ϕTi,1,a∗,t∗ ,Ti,1,a,t(x1, x2)

ϕηi,1,a∗,t∗ (x1)ϕηi,1,a,t(x2)
,

where the last equality holds by the time-independence of ηi,1,a,t distributions. Since we

know all distributions on the right hand side, we can identify the joint distribution of

(τ1(θi,a∗,t∗), τ1(θi,a,t)). Then, the joint distribution of (θi,a∗,t∗ , θi,a,t) is identified by

Fθi,a∗,t∗ ,θi,a,t(x1, x2) = P (θi,a∗,t∗ ≤ x1, θi,a,t ≤ x2)

= P (τ1(θi,a∗,t∗) ≤ τ1(x1), τ1(θi,a,t) ≤ τ1(x2)),

where the final expression is identified since we know both τ1(·) and ϕτ1(θi,a∗,t∗ ),τ1(θi,a,t)(·, ·).
Therefore, we can construct the conditional density fθi,a,t|θi,a∗,t∗ from the joint distribution

and identify the serial dependence of θi,a,t. Similarly, we can identify the joint distribution

of (εi,a∗,t∗ , εi,a,t) by noting that

ϕεi,a∗,t∗ ,εi,a,t(x1, x2) =
ϕwi,a∗,t∗ ,wi,a,t(x1, x2)

ϕθi,a∗,t∗ ,θ̃i,a,t(x1, x2)

=
ϕwi,a∗,t∗ ,wi,a,t(x1, x2)

ϕθi,a∗,t∗ ,θi,a,t(x1, λtx2)× exp(−iαa,tλtx2)
,

where we already know αa,t, λt, and the two joint distributions on the right hand side. The

serial dependence of (εi,a,∗,t∗ , εi,a,t) follows immediately.

2.2.3 Skill Process: AR(1) and Fixed Effect

We now consider the identification problem for the skill process when skills are decom-

posed into the following three components: (i) a systematic lifecycle skill growth component,
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which can differ freely across cohorts, αa,t; (ii) an individual fixed effect ψi; and (iii) an AR(1)

component φi,a,t. Thus, the skill process can be written as follows:

θi,a,t = αa,t + ψi + φi,a,t,

φi,a,t = ρφi,a−1,t−1 + νi,a,t,
(3)

where νi,a,t is independent over t. We further assume that ψi is independent of φi,a,t and

νi,a,t for all (a, t). We normalize E(ψi) = E(νi,a,t) = E(φi,a,t) = 0 for all (a, t), which implies

αa,t = E(θi,a,t) as before. We normalize αa∗,t∗ = 0 for some (a∗, t∗).12

Notice that we have already identified the returns to skills and age/cohort- and time-

specific skill distributions using only repeated cross-sections of log wages and skill measures

(see Section 2.2.1). To identify the basic components in equation (3), we need panel data

from (at least) three periods, t, t+ 1, and t+ 2

First, we can use similar arguments as in Section 2.2.2 to identify the joint distribution

of (θi,a,t, θi,a+1,t+1, θi,a+2,t+2). Then, we can construct the following moment conditions from

equation (3):

V ar(θi,a,t) = V ar(ψi) + V ar(φi,a,t)

Cov(θi,a,t, θi,a+1,t+1) = V ar(ψi) + ρV ar(φi,a,t)

Cov(θi,a,t, θi,a+2,t+2) = V ar(ψi) + ρ2V ar(φi,a,t).

Solving this system of equations, we can identify ρ as

ρ = 1− V ar(θi,a,t)− Cov(θi,a,t, θi,a+2,t+2)

V ar(θi,a,t)− Cov(θi,a,t, θi,a+1,t+1)
,

where moments on the right hand side are identified from the joint density of (θi,a,t, θi,a+1,t+1, θi,a+2,t+2).

Next, we can identify cohort- and time-specific distributions for skill shocks and cohort-

specific distributions for the fixed effects. We fix a cohort and let t0 be the first year it is

observed. First, since we already know αa,t and the joint distribution Fθi,a+1,t+1,θi,a,t for all

(a, t), we identify the left hand side of the following two equations:

θi,a,t0 − αa,t0 = φi,a,t0 + ψi

(θi,a+1,t0+1 − αa+1,t0+1)− (θi,a,t0 − αa,t0)
ρ− 1

= φi,a,t0 +
νi,a+1,t0+1

ρ− 1
.

12It is not necessary to use the same t∗ here as used for normalizing λt∗ = 1; however, we do so in this
section to simplify the exposition.

12



Since φi,a,t0 , ψi, and νi,a+1,t0+1 are mutually independent, we can identify their distributions

by applying Kotlarski’s Lemma (Kotlarski, 1967). Second, we identify the distribution of

φi,a,t sequentially for all t ≥ t0 +1 from φi,a+1,t+1−φi,a,t = (θi,a+1,t+1−αa+1,t+1)−(θi,a,t−αa,t)
by applying standard deconvolution arguments, since we know the distribution of the right

hand side and that of φi,a,t0 . Finally, we identify the distribution of νi,a,t for t ≥ t0 + 1 from

φi,a,t = ρφi,a−1,t−1 + νi,a,t by applying the deconvolution arguments again.

2.3 Estimation

We can estimate the full model nonparametrically, e.g. the sieve maximum likelihood

estimator as in Hu and Schennach (2008). However, it is quite challenging in practice as the

objective function involves multiple integration over many unobservables.

We mitigate this computational difficulty by developing a three-step estimation procedure

based on the identification strategy outlined earlier. First, one can estimate the measure-

ment functions τj(·) and the distribution of skills θi,a,t∗ from the cross-sectional observations

of {wi,a,t∗ , Ti,1,a,t∗ , . . . , Ti,J,a,t∗} for all ages a at time t∗. Second, repeated cross-sectional ob-

servations {wi,a,t, Ti,1,a,t, . . . , Ti,J,a,t} at (a, t) 6= (a∗, t∗) can be used along with the estimated

τ̂1(·) (from Step 1) to estimate the skill return λt and skill distribution of θi,a,t for all (a, t).

Finally, panel data (if available), can be used to estimate the dynamics of skill distributions.

The estimation of skill dynamics (and other features of the model) becomes much simpler

when any continous measurement function τj(·) estimated in Step 1 turns out to be linear.

We discuss this simpler estimation approach at the end of this section.

2.3.1 Step 1: Estimating τj(·) and fθa,t∗ (·)

We can estimate τj(·) functions and the skill distributions fθa,t∗ (·) for all ages using

cross-sectional data at time t∗. Normalizing λt∗ = 1 and αa∗,t∗ ≡ E(θi,a∗,t∗) = 0, we con-

sider a nonparametric maximum likelihood estimation (NPMLE) approach by using flexible

functional form and distributional assumptions (e.g. polynomials for measurement functions,

mixtures of normal distributions for densities, or sieve estimation using Hermite polynomi-

als). The complexity of the underlying parameter space can be adjusted depending on the

model structure and the sample size.

Let fwa∗,t∗ ,T1,,a∗,t∗ ,...,TJ,a∗,t∗ be the joint density function of (wa∗,t∗,, T1,a∗,t∗ , . . . , TJ,a∗,t∗).
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Since observations are i.i.d. over individuals, we drop the subscript i unless it causes any con-

fusion. For simplicity, we assume that G(·) is an identity function and all Tj are continuous.13

The independence assumption among (θa∗,t∗ , εa∗,t∗ , η1,a∗,t∗ , . . . , ηJ,a∗,t∗) implies that

fwa∗,t∗ ,T1,a∗,t∗ ,...,TJ,a∗,t∗ (w, T1, . . . , TJ)

=

∫
Θ

fεa∗,t∗
(
w − θ;βεa∗,t∗

)
× fη1,a∗,t∗

(
T1 − τ1(θ;βτ1);βη1,a∗,t∗

)
× · · · × fηJ,a∗,t∗

(
TJ − τJ(θ;βτJ );βηJ,a∗,t∗

)
× fθa∗,t∗

(
θ;βθa∗,t∗

)
dθ,

(4)

where βx for a generic x denotes a vector of the parameters or the polynomial coefficients for

the unknown distribution or function. Recall that all density functions in (4) should satisfy

the mean zero restriction. The above density function can be used to form the log-likelihood

function. Let βa∗,t∗ ≡ ({βτj ,βηj,a∗,t∗}Jj=1,βεa∗,t∗ ,βθa∗,t∗ ) be the stacked vector of all unknown

parameters. It can be estimated by

β̂a∗,t∗ = arg max
βa∗,t∗∈B

1

|Ic∗|
∑
i∈Ic∗

log fwa∗,t∗ ,T1,a∗,t∗ ,...,TJ,a∗,t∗ (wi,a∗,t∗,, Ti,1,a∗,t∗ , . . . , Ti,J,a∗,t∗ ;βa∗,t∗),

(5)

where Ic∗ is the subset of individuals who belong to cohort c∗ = t∗ − a∗ and |I| is the

number of elements in set I. Of particular interest to us are the estimates {β̂τj}Jj=1 and

βθa∗,t∗ , which give us the estimated measurement functions {τ̂j(·)}Jj=1 and skill distributions

f̂θa∗,t∗ (·), respectively.14 We can repeat the estimation procedure in (5) for each cohort (a, t∗)

and estimate the skill distribution fθa,t∗ of cohort c = t∗ − a at time t∗.

We can also increase the estimation efficiency of τ̂j(·) by including all cohorts in a single

optimization procedure. For any cohort c = a − t∗, define the cohort specific objective

function:

Q(βa,t∗) ≡
1

|Ic|
∑
i∈Ic

log fwa,t∗ ,T1,a,t∗ ,...,TJ,a,t∗ (wi,a,t∗,, Ti,1,a,t∗ , . . . , Ti,J,a,t∗ ;βa,t∗). (6)

13When Tj for j ≥ 2 include a discrete measure, we can replace fηj,a∗,t∗ with a proper discrete probability
mass function. For example, see Appendix B

14Appendix B provides expressions for likelihoods assuming mixtures of normal distributions for errors and
discusses the case of both discrete and continuous measurements, Tj,a∗,t∗ . Details on estimation of standard

errors for β̂a∗,t∗ are also provided in Appendix B.

14



Let βt∗ ≡ {βa,t∗}a∈A be the stacked parameter vector, where A is an index set of all different

ages (cohorts) at time t∗. Then, the parameter of interest as well as some nuisance parameters

can be estimated by

β̂t∗ = arg max
βt∗∈B|A|

∑
a∈A

Q(βa,t∗)

Notice that we normalize the mean of the skill distribution only in cohort c∗, so the density

function fθa,t∗ for a 6= a∗ is allowed to have a non-zero mean. This estimation approach will be

more efficient if the measurement errors {εa,t∗}a∈A and {ηa,t∗}a∈A have identical distributions

across different cohorts.

Finally, we note that if one is simply interested in determining whether any of the τj(·)
functions is linear (or only the density of skills in period t∗ across all ages/cohorts is de-

sired), then the likelihood in equation (4) can alternatively be written in terms of fθt∗ (with

parameters βθt∗ ), normalizing this density to be mean zero. Indeed, this is the approach we

take below in determining that one of our measures is linear in skills.

2.3.2 Step 2: Estimating λt and fθa,t(·)

Now, we discuss estimation of skill returns, λt, and the skill distributions, fθa,t(·), with

additional cross-sectional data at time t 6= t∗. Embedding the estimated measurement

function τ̂1(·) and the unknown skill return λt, we can write the density function at time t

as

fwa,t,T1,a,t,...,TJ,a,t(w, T1, . . . , TJ)

=

∫
Θ

fεa,t
(
w − λtθ;βεa,t

)
× fη1,a,t

(
T1 − τ̂1(θ);βη1,a,t

)
× fη2,a,t

(
T2 − τ2(θ;βτ2);βη2,a,t

)
× · · · × fηJ,a,t

(
TJ − τJ(θ;βτJ );βηJ,a,t

)
× fθa,t

(
θ;βθa,t

)
dθ.

(7)

Define Q(λt, β̃a,t) as in (6) by adding the skill return parameter λt and let β̃t ≡ {β̃a,t}a∈A,

where we drop βτ1 from each βa,t as we already plugged in the estimate from Step 1. If any

measure observed at time t∗ is repeated at time t, we can replace it with τ̂j(·) and drop

the relevant parameters. The parameter set is further simplified when εa,t and ηj,a,t are

age/time-invariant since we can plug-in the corresponding estimates from Step 1. Then, we
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can estimate the skill return and other underlying parameters at time t by(
λ̂t, β̂t

)
= arg max

(λt,β̃t)∈Λ×B̃|A|

∑
a∈A

Q(λt, β̃a,t).

Once we obtain estimates β̂θa,t for skill distributions fθa,t(·), we can estimate αa,t for all a ∈ A
at time t. In addition, we can estimate time effects in the wage equation by γ̂t = γ̃ − λ̂tα̂a,t,
where we have already estimated all the components on the right hand side.

2.3.3 Step 3: Estimating Skill Dynamics

We discuss estimation of skill dynamics for two different cases, both using panel data.

First, for a general Markov skill process, we can apply the same idea as above to estimate

its dynamics using any repeated continuous measure of skills. Given the estimated elements

of the model, we can write the joint density function of repeated continuous measure j at

time t and t+ 1 as follows:

fTj,a,t,Tj,a+1,t+1
(Tt, Tt+1;βθa,t,θa+1,t+1) =

∫∫
Θ×Θ

f̂ηj,a,t(Tt − τ̂j(θt))f̂ηj,a+1,t+1
(Tt+1 − τ̂j(θt+1))

× fθa,t,θa+1,t+1(θt, θt+1;βθa,t,θa+1,t+1)dθtdθt+1,

(8)

where fθa,t,θa+1,t+1(θt, θt+1;βθa,t,θa+1,t+1) is the joint density function of (θa,t, θa+1,t+1). The

measure j specific objective function can be defined as

Qj(βθa,t,θa+1,t+1) =
1

|Ic|
∑
i∈Ic

log fTj,a,t,Tj,a+1,t+1
(Ti,j,a,t, Ti,j,a+1,t+1;βθa,t,θa+1,t+1).

Then, the parameters for the joint density function are estimated by

β̂θa,t,θa+1,t+1 = arg max
βθa,t,θa+1,t+1

∈Bθ
Qj(βθa,t,θa+1,t+1).

Once we have estimated the joint density function, the dynamics of the skill process follow

immediately from the conditional density function.

Second, if the skill process follows the AR(1) with fixed effect structure as in (3), the

parameters for this process can be estimated following a similar strategy as above using a

modified version of equation (8) that incorporates an additional time period to estimate the

joint density fθt,θt+1,θt+2 where the parameters for this density, βθa,t,θa+1,t+1,θa+2,t+2 include the

relevant cohort c = t − a distribution for ψi and parameters of the AR(1) process (ρ and

parameters determining distributions for φi,a,t, νa+1,t+1, and νa+2,t+2).
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2.3.4 Estimation of Skill Distributions, Skill Dynamics, and Returns to Skill
when a Linear Measurement is Available

In our empirical context, one of the measurements, say T1,a,t, is determined to be linear

in skills from the estimation procedure described in Section 2.3.1. We use this information to

facilitate estimation of the returns to skill over time and the evolution and dynamics of skills

assuming the special case where θi,a,t follows the AR(1) plus fixed effect process described in

equation (3).

Using the known linear measurement Ti,1,a,t = β1,0 + β1,1θi,a,t + ηi,1,a,t, our model for log

wage residuals and the skill measurement can be written in terms of de-meaned skills:

wi,a,t = λtθ̄i,a,t + εi,a,t,

θ̄i,a,t = ψi + φi,a,t,

φi,a,t = ρφi,a−1,t−1 + νi,a,t,

Ti,1,a,t = (β1,0 + β1,1αa,t) + β1,1θ̄i,a,t + ηi,1,a,t.

These imply the following covariances for (a, t):

Cov(wa,t, T1,a+k,t+k) = λtβ1,1

[
V ar(ψ|t− a) + ρkV ar(φa,t)

]
, for k ≥ 0

Cov(T1,a,t, T1,a+k,t+k) = β2
1,1

[
V ar(ψ|t− a) + ρkV ar(φa,t)

]
, for k ≥ 1

Cov(T1,a,t, wa+k,t+k) = λt+kβ1,1

[
V ar(ψ|t− a) + ρkV ar(φa,t)

]
, for k ≥ 1.

Assuming the distribution of skill shocks depends only on time, we define σ2
νt ≡ V ar(νa,t)

for all (a, t) and can write

V ar(φa,t) = ρ2(t−t1)V ar(φa−(t−t1),t1) +
t∑

s=t1+1

ρ2(t−s)σ2
νs , ∀t ≥ t1 + 1,

where t1 is the initial period of observation. As discussed earlier, we normalize λt∗ = 1

and αa∗,t∗ = 0. With these assumptions, the generalized methods of moments (GMM) can

be used to jointly estimate the time-varying returns to skill (λt), autocorrelation for skill

shocks (ρ), variances of initial skills by cohort (V ar(ψ|t−a) for all observed cohorts), initial

variances of the persistent skill shock (V ar(φa,t1) for cohorts observed in initial period t1

and V ar(φa1,t) for cohorts entering the sample at age a1 at later dates), time-varying skill

shock variances (σ2
νt), and the measurement function parameters (β1,0, β1,1). Further details

on estimation and calculation of the standard errors are provided in Appendix C.
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3 HRS Data

We use data from the Health and Retirement Study (HRS), a national U.S. panel survey

of individuals over age 50 and their spouses.15 It consists of seven cohorts with the initial

cohort first interviewed in 1992. New cohorts of individuals were added in 1993, 1998, 2004,

2010, and 2016.16 The survey has been fielded every two years since 1992 and it provides

information about demographics, income, and cognition, making it ideal data for the purpose

of our study. Because one of the cognitive tests (word recall) in 1992 and 1994 differs from

the later years, we use data collected from 1996 to 2016.17

The HRS records the respondent’s and spouse’s wage rates if they are working at the time

of the interview. We use the hourly wage rate, deflating nominal values to 1996 dollars using

the Consumer Price Index.18 The HRS also provides various cognitive functioning measures.

We use four measures in our estimation: word recall, serial 7’s, quantitative reasoning, and

retrieval fluency. Table 1 provides a brief summary of these measures. The word recall test

evaluates the memory of the respondents by reading a list of 10 words and asking them to

recall immediately (immediate recall) and after a delay of about 5 minutes (delayed recall).

We sum up the number of words the respondent recalled in the two tasks and obtain a score

of 21 different values. The serial 7’s test asks the respondent to subtract 7 from the previous

number, starting with 100 for five trials. This test score is the number of trials that the

respondent answered correctly, and it has 6 different values. Quantitative reasoning consists

of three simple arithmetic questions assessing the numeracy of the respondent. We construct

a test score based on the answers and the resulting score ranges from 0 to 4. The retrieval

15More precisely, the sample does include some individuals age 50. For example, someone from the original
cohort (born in 1931-1941) who was born late in 1941 may have been age 50 at the date of their first interview
in 1992 if they were interviewed earlier in the calendar year.

16The HRS sample was built up over time. The initial cohort consisted of persons born between 1931 and
1941 (aged 51 to 61 at first interview in 1992). The Asset and Health Dynamics Among the Oldest Old
(AHEAD) cohort, born before 1924 was added in 1993 and interviewed in 1993, 1995, and biennially from
1998 forward. In 1998, two new cohorts were enrolled: the Children of the Depression (CODA) cohort, born
1924 to 1930, and the War Baby (WB) cohort, born 1942 to 1947. Early Baby Boomer (EBB, born 1948 to
1953) cohort was added in 2004, Mid Baby Boomer (MBB, born 1954 to 1959) cohort was added in 2010,
and Late Baby Boomer (LBB, born 1960 to 1965) cohort was added in 2016. In addition to respondents
from eligible birth years, the survey interviewed the spouses of married respondents or the partner of a
respondent, regardless of age.

17The word recall test contains a list of 20 words in 1992 and 1994, while it has been reduced to 10 words
in later years.

18https://www.bls.gov/cpi/research-series/home.htm#CPI-U-RS20Data
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fluency test asks the respondents to name as many animals as they can in 60 seconds. The

test score is the total number of correct answers, ranging from 0 to 90. Additional details

about the measures and the construction of other key variables are provided in Appendix D.

Our sample is restricted to age-eligible (i.e. born in eligible years when first interviewed)

men. We use observations when men are ages 50-70 if their potential labor market experience

is between 30 and 50 years.19 We trim the top and bottom 1% of all wages within year by

college- vs. non-college-educated status and 10-year experience cells. In estimation, we use

non-imputed wages and cognitive measures only. The sample contains 9,848 individuals and

37,518 person-year observations.

Our sample consists of 64% white, 18% black, 13% Hispanic, and 5% other races with an

average age of 60 years. We create five education categories based on years of education: 0-11

years (less than high school graduate), 12 years (high school graduate), 13-15 years (some

college), 16 years (college graduate), and 17 or more years (above college). In our sample, 20%

had less than 12 years of schooling, 30% had 12 years of schooling, 24% had some college, 14%

completed college, and 13% had more than 16 years of schooling. Table 2 shows the mean and

the standard deviation of the cognitive scores and log hourly wage, along with the correlation

between these variables. The correlations between test scores range from nearly 0.3 to 0.5,

with the highest correlation between Serial 7’s and quantitative reasoning. Retrieval fluency

has the lowest correlation with log wages (0.214), while quantitative reasoning has the highest

(0.303).

4 Estimation Results

4.1 Cross-Sectional Results for Measurement Functions

As discussed in Section 2.3.1, we use data from a single year, t∗ = 2010, to estimate

measurement functions τj(·), as well as Fθt∗ (·), Fεt∗ (·), and Fηj,t∗ (·). We use data from 2010,

because this is the only year that all four cognitive measures we consider were recorded for

every respondent.20 We further restrict the sample to have non-missing wages and at least

one non-missing cognitive measure in 2010. The sample size for this 2010 analysis is 1,980.

19Potential experience is defined as age minus 6 minus years of schooling.
20In other waves, either one or more of the cognitive tests were not administered or some of the testes

were only administered to new interviewees and/or re-interviewees ages 65 or older.
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We estimate the parameters by maximum likelihood as described in Section 2.3.1, nor-

malizing λt∗ = 1. We treat word recall (T1) and retrieval fluency (T2) as continuous measures,

assuming both τ1(·) and τ2(·) are polynomial functions. In practice, we use likelihood ratio

tests to determine the polynomial degree for each measure. We treat the serial 7’s (T3) and

quantitative reasoning (T4) scores as discrete measurements generated from ordered probits

with latent index functions τj(θi,t) + ηi,j,t.
21

We estimate the model for three cases. In Case 1, we assume that log wage shocks εt,

continuous measurement errors (η1, η2), and unobserved skills θt are all normally distributed.

Case 2 assumes that skill θt is distributed as a mixture of two normal distributions, while

εt and (η1, η2) are all normally distributed. Finally, Case 3 is most general, assuming both

skill θt and wage shocks εt are distributed as mixtures of two normal distributions, while

the measurement errors (η1, η2) are normally distributed. While we assume the distributions

of measurement errors are time invariant, we allow the distributions for skills and log wage

shocks to vary freely over time.

For each case, we estimate different specifications by increasing the degree of polynomials

for τ1 and τ2, starting from a linear specification until the model cannot be improved further,

as determined by likelihood ratio tests. Then, the “best” specifications from each of the three

cases are compared to determine the “best” overall specification, again using the likelihood

ratio test. Table 3 reports the log-likelihood associated with several specifications and the

three cases, along with likelihood ratio test statistics and p-values. Based on the likelihood

ratio tests, the “best” overall specification allows both θt and εt to be distributed as mixtures

of normal distributions. Furthermore, τ1(·) (word recall) is linear in skill, while τ2(·) (retrieval

fluency) is a polynomial of degree 7 in skill. Table 4 reports parameter estimates and standard

errors for this preferred specification.

4.2 Results for Skill Distributions, Skill Dynamics, and Returns
to Skill

The fact that word recall scores are linear in skill is convenient and enables us to use

the relatively simple approach described in Section 2.3.4 to estimate the returns to skill over

21For each of the discrete measures, we have Kj = 5 or 6 choices, and we estimate linear terms (intercept
terms are normalized to zero) for the τj(·) functions along with Kj − 1 cutoff parameters. See Appendix B
for details.
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time, evolution of skill distributions over time, and the dynamics of skills. To do so, we use

the panel nature of the HRS from 1996-2016 (11 biennial surveys), further restricting the

sample to include men ages 52-65. There are very few observations outside of that age range

for the years we examine.

Since we only observe wages for those who are working at the time of the survey, there

are natural concerns about the implications of selection for any covariance moments that

include log wage residuals. (Fortunately, test scores are available regardless of work status.)

To explore the potential implications of selection, we consider four different sampling schemes

for this analysis:

1. “Full” Sample: This includes covariances for log wage residuals and/or test scores

whenever they are available. Therefore, covariances using log wage residuals are only

calculated for workers, while covariances based only on test scores are calculated for

both workers and non-workers.

2. “Worker” Sample: This eliminates covariances for test score measures unless an indi-

vidual is working in both periods.

3. “Wage 50-60” Sample: This only includes covariances with log wage residuals for years

when the worker is ages 50-60.

4. “Exp 30-40” Sample: This only includes covariances with log wage residuals for years

when the worker has 30-40 years of potential experience.

The “Full” Sample raises the most concern about selection due to early retirement. For

example, if some (e.g. lower skill) workers retire early when they experience a low wage

shock, εt, while other workers (e.g. higher skill) do not, this can distort the covariance

between log wage residuals and test score measures. Yet, the covariance between test scores

is unaffected by this sort of selection. The “Worker” Sample does not address the selection

problems, but it would provide more direct estimates that apply to the selected sample

of workers. The “Wage 50-60” and “Exp 30-40” Samples address concerns about selective

retirement to the extent that the vast majority of men are still working throughout their 50s

or prior to reaching 40 years of potential experience (e.g. age 58 for a high school graduate).

Even those retiring “early” typically work during these years.
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Using data available for even-numbered years, we use the GMM approach of Section 2.3.4

(with identity weighting matrix) to estimate β1,1 (for word recall), returns to skill λt, and the

evolution of skill distributions. Because we allow for age/cohort variation in the distribution

of “initial” φa,t skill shocks, we assume a cohort-invariant distribution of skill fixed effects

(i.e. V ar(ψ|c) = V ar(ψ) for all cohorts c). Regarding the skill distributions, we estimate the

two-year autocorrelation for persistent skills ρ2, variance of fixed effects V ar(ψ), variances

of skill shocks σ2
νt , and variances of “initial” φa,t skill shocks when individuals enter the

sample.22

Table 5 reports the estimates and standard errors for β1,1, ρ2, and V ar(ψ) for all four

samples. The estimates are fairly similar across samples; although, the estimated β1,1 map-

ping skills into word recall scores ranges from 9.0 for the “Worker” Sample to 11.8 for the

“Exp 30-40” Sample. Of greater interest are the skill fixed effects variance estimates, which

range from 0.014 to 0.025. Based on the “Full” Sample estimates, these suggest that varia-

tion in these permanent skill differences accounts for 38% of the variation in skills and 5% of

the variation in log wages at age 60 in 2002. Our estimates for ρ2, which reflect the dynamics

of skill shocks, are also similar across samples at 0.86 to 0.87. These imply values for ρ of

about 0.93, within the typical range of autocorrelations for log earnings innovations in the

earnings dynamics literature (Meghir and Pistaferri, 2011).

The estimated time patterns for σ2
νt are shown in Figure 1, while estimates for V ar(φa,t)

are shown in Figure 2 (estimates for all ages in 1996) and Figure 3 (estimates for ages 52

and 53 for years 1998-2016). These estimates suggest considerable stability in the process

for persistent skill shocks over time and across cohorts.

Finally, Figure 4 plots estimated returns to skill, λt, over time for all samples, along

with their 95% confidence intervals. Estimated profiles for all four samples suggest relative

stability in skill returns until the Great Recession, after which they appear to rise steadily

through the end of our sample period. Point estimates for the “Full” Sample suggest that

the returns to skill rose from a low of 0.82 in 2008 to a high of 1.21 in 2016.23 The qualitative

22We estimate λt for t = 1996 to 2016, normalizing λt∗ = 1 for t∗ = 2010. We estimate σ2
νt for years

t = 1998 to 2016, normalizing σ2
ν1996 = 0. We estimate variances of initial AR(1) skill shocks for men first

observed in 1996, V ar(φa,1996) for ages a = 52 to 65, as well as for men first observed at ages 52 and 53 in
other years, i.e. V ar(φ52,t) and V ar(φ53,t) for t = 1998 to 2016.

23Using a Wald test, we reject that the return does not change from 2008 to 2016 at 1% significance level.
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pattern of relatively stable returns to skill in the late 1990s and early 2000s, followed by a

rise after 2008, is consistent with the estimates of Lochner et al. (2020); however, standard

errors for λ̂t are large, making it is difficult to say how much returns actually rose after 2008,

or to evaluate year-to-year changes in returns, with any confidence.

4.3 Average Skill Profiles

We now explore average skill profiles by age and time for various subpopulations of

interest. Because we observe cognitive test scores for individuals whether they work or

not, we can examine the evolution of skills through and after retirement. Indeed, we report

average lifecycle skill profiles over ages 50-70. We begin by showing profiles for different birth

cohorts in the HRS, then consider different skill profiles by education and race. Finally, we

explore differences in skill profiles for workers who retire at different ages.

Since Ti,1,a,t = β1,0 + β1,1θi,a,t + ηi,1,a,t for word recall, we can write

θi,a,t =
Ti,1,a,t − β1,0

β1,1

− ηi,1,a,t
β1,1

,

where ηi,1,a,t is mean zero. Linearity of the test score function implies that actual skills are

simply a re-scaled measure of test scores plus idiosyncratic noise. While test score measures

only allow us to obtain very noisy estimates for any specific individual’s skill level, we can

obtain much more precise estimates of average skill levels.

Since we normalize α54,1996 = 0, we have β1,0 = E(T1,54,1996), which can easily be estimated

using the sample mean for word recall scores among individuals age 54 in 1996: β̂1,0 =

T̄1,54,1996. Using this along with our estimate of β̂1,1 from Table 5, we estimate average skills

as

α̂a,t =
T̄1,a,t − β̂1,0

β̂1,1

, (9)

where T̄1,a,t reflects average T1,a,t for all individuals age a in year t. We can similarly obtain

estimates for average skills (by age and time) conditional on any personal characteristics as

long as those characteristics are independent of cognitive achievement measurement errors.

In this case, we would simply use average word recall scores for the subpopulation of interest

in equation (9). It is also worth noting that we can calculate average skills for ages outside

the range we used in estimation, assuming that the measurement function mapping skills to

test scores is age-invariant.
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We begin by estimating average skills by age and time, α̂a,t. Recall that skills are mea-

sured in log wage units (as of 2010), so differences in skill translate roughly into percentage

differences. Rather than show all of these estimates, we first regress α̂a,t on age and year

indicators (weighting by the number of observations in each age-year cell) to explore the

extent to which these vary with age and time. In Figure 5, panel (a) plots the regression

coefficients on age indicators for all four estimation samples, while panel (b) plots the re-

gression coefficients on year dummies. The age patterns suggest relative stability, except

for a roughly 3 percentage point jump up in average skills from age 52 (our base group in

the regression) to age 53 and a similar sized drop between ages 61 and 63. Panel (b) shows

relative stability in average skills over time with a sharp drop between 2008 and 2010 with

the introduction of the Mid-Baby Boomer cohort.

Because cohorts may differ in their skills, the introduction of new cohorts to the HRS

sample can produce jumps up and down in average skills like those seen Figure 5. We next

look at the age profiles (ages 52-70) for different cohorts, which should be representative of

average skills for those cohorts. Because each of these cohorts faced different educational,

social, and economic conditions throughout their lives, one might expect to observe differ-

ences in their accumulated skills as of age 52 and beyond. Indeed, we see sizeable differences

as documented in Figure 6. From age 52 to 62, average skill levels are highest for men born

during World War II (WWII) and earlier, followed by the Early Baby Boomer cohorts (born

1948-1953), and then subsequent cohorts. At age 55, cohorts born before the War had av-

erage skill levels that were about 11 percentage points higher than men born between 1954

and 1959. By age 60, this gap had shrunk to about 3 percentage points, disappearing by

age 63. Beyond age 63, cohort differences are small, even reversing with the earliest cohort

exhibiting a much more rapid decline in skills with age compared to the War Babies and

Early Baby Boomers. While average skill levels began to decline with age for men in their

mid-50s for the cohorts born before, during, and immediately after WWII (by 8-13 percent-

age points), skill profiles remained relatively flat for the Mid-Baby Boomer cohorts (born

1954-59) throughout their late-50s and early-60s. Unfortunately, few men from the most

recent cohort (born 1960-65) are observed beyond age 55, so it is difficult to say whether the

apparent flattening of lifecycle skill profiles among men ages 55+ will continue.

Next, we explore whether lifecycle skill profiles among older workers differ systematically
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by education or race. To remove the influence of any cohort differences, we regress θ̂i,a,t =

(Ti,1,a,t− β̂1,0)/β̂1,1 on HRS cohort indicators and interactions between annual age indicators

and educational attainment indicators (less than high school, high school graduate, some

college, college graduate, post-graduate) or race indicators (white vs. non-white).

Not surprisingly, Figure 7 shows sizeable and statistically significant differences in skills

across education groups, with college graduates possessing about 15-20% higher skill levels

than high school graduates over ages 56-70.24 High school dropouts have 10-17% lower skill

levels than high school graduates. What is, perhaps, most noteworthy about this figure

is the apparent parallelism in skills, even through typical retirement and post-retirement

ages. Skills are systematically declining beyond age 55 with similar rates of decline for all

education groups.25

Figure 8 shows the estimated average skill profiles by race. Consistent with lower wages

among non-whites, we see that average skill levels are about 10-20 percentage points lower

for non-white men over ages 52-57. (These gaps are statistically significant at all ages.) As

with education, we see similar lifecycle profiles for both whites and non-whites.26

Table 6 reports average estimated skill levels and log wage residuals, which net out age

and time effects, by race and education for individuals ages 55-60. Column 1 reports average

skills for the full sample, while column 2 reports average skills for the sample of workers (i.e.

respondents reporting wages during the same periods). Average skill levels by education and

race are larger for the sample of workers, but the differences are modest and vary little across

education and race groups. This suggests that selection into retirement has quite modest

effects on average skill levels in the workforce. As already evident in Figures 7 and 8, the

average skill gap between college and high school graduates is quite similar to the skill gap

between whites and non-whites, about 15%. Column (3) shows that the corresponding gaps

in average log wage residuals (also at ages 55-60) are much larger — college graduates have

44% higher wages than high school graduates, while the race gap in wages is about 35%.

24F-tests for equality of skills across any education comparison at any age from 52 to 70 yield p-values less
than 0.05 for all but four comparisons.

25Using F-tests for equality of average changes in skill (from age a to a + 1 for all available a shown in
the figure) across education groups, we cannot reject parallelism in age profiles (at 5% significance level)
for any education comparison. We also cannot reject parallelism for any education groups over subperiods,
including ages 55-60, 60-65, and 65-70.

26Based on F-tests, we only reject parallelism over ages 52-55. We cannot reject parallelism over ages
55-60, 60-65, and 65-70.
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Thus, the cognitive skills captured by our measures explain an important share of education

and race wage gaps, but other factors also play an important role.

The results presented so far suggest a systematic decline in skills for men that begins

when they are in their mid-50s (or earlier). Is this explained by a gradual increase in rates of

retirement with sharp declines in skills for those who retire, or does it reflect more gradual

declines for all workers regardless of when they decide to retire? The patterns presented in

Figure 9 favor the latter explanation. Panel (a) shows lifecycle average skill profiles sepa-

rately for workers who retire at ages 50-54, 55-59, 60-64, and 65+, while panel (b) removes

cohort effects by regressing θ̂i,a,t on cohort indicators and interactions of age indicators with

retirement age indicators (as with education and race above). In neither case do we see

evidence of steep drops over the ages when individuals retire or in the time immediately

following retirement.

Still, the skill levels and lifecycle patterns notably differ for those who retire early and

those who retire late compared to those retiring between ages 55 and 64. Those who retire

before age 55 have much lower skill levels in their 50s compared to those who retire later;

however, their skills continue to grow until age 61, while the skills of men retiring at ages

55-64 decline over most of these ages. Differences between very early retirees and those

retiring at ages 55-64 are largely eliminated by age 60.

Those who retire at ages 65 or older possess the highest skill levels; however, their lifecycle

profile over ages 52-70 looks more like that of very early retirees than those retiring in their

late 50s and early 60s. These late retirees experience modest skill growth until their mid-50s,

stable skill levels to about age 60, and strong declines thereafter. By age 65, about half of

the difference in skills between them and those retiring over ages 55-64 is eliminated.

These patterns imply a complex relationship between retirement and skills. There is clear

evidence that those with high skills in their mid-50s choose to retire late while those with

low skills (a difference of more than 10 percentage points) choose to retire quite early. But,

there is little evidence to suggest that retirement itself is strongly associated with a decline

in skills.27 Among those retiring very young, skills continue to increase for years after they

retire, several years after they have already started declining for those retiring in their late

27Both Rohwedder and Willis (2010) and Bonsang et al. (2012) estimate significant negative causal effects
of retirement on cognition using the HRS; however, Coe et al. (2012) does not.
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50s or early 60s. Over the same ages, skills are also increasing or stable for men who retire

after age 65.

5 Conclusions

With multiple skill measures and wages each period, we have shown that if at least one

measure is continuous and repeated, it is possible to nonparametrically identify the evolution

of skill prices and cross-sectional skill distributions over time without any assumptions on

the distributions or dynamics of skills. With panel data, the same measurements and wages

can identify skill dynamics as well. Our constructive identification analysis motivates a

very general multi-step estimation approach. We also show that if any of the continuous

measurements is found to be linear in skills (in the first estimation step), a simple GMM

approach can be used to estimate skill returns, the means and variances of skill distributions

over time, and a flexible dynamic process for skills with a fixed effect and AR(1) stochastic

process.

Using data from the 1996-2016 HRS, we estimate the evolution of skill returns, skill

distributions, and skill dynamics for American men ages 52+ over that period. We first

show that one of the repeated continuous test measures we observe is linear in skills and

then use our simpler GMM estimation approach. Our estimates suggest that the returns

to (cognitive) skills were fairly stable from the mid-1990s through the early 2000s, but then

began to rise significantly after the Great Recession. This pattern is broadly consistent with

that of Lochner et al. (2020).

We document considerable differences in average skill levels and lifecycle profiles across

cohorts. More recent cohorts of men had significantly lower average skill levels in their

mid-50s than did earlier cohorts when they were the same ages. However, earlier cohorts

experienced much faster declines in skill with age, such that the earlier skill differences had

largely disappeared by the time cohorts had reached their 60s. For the latest cohort we

observe (men born in 1954–1959), we see no discernable decline in average skills prior to age

63 when they are last observed. Distinguishing individuals by education and race, we find

that average skills are monotonically increasing in education and are higher for whites than

non-whites. These education and race gaps are quite similar across ages and explain about
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one-third of the education differences and nearly half of the race differences in log wages.

We also consider the interaction of skills and retirement, showing that those who retire

at older ages have substantially higher skills in their mid-50s. While skills generally decline

with age for men, at least after reaching age 60, we see no sharp declines around the time

men retire. To the extent that retirement does lead to cognitive decline, our results suggest

that the effects are relatively modest or largely offset by other lifecycle forces.

Finally, we show that individual fixed effects account for more than a third of all skill

variation at age 60. Year-to-year fluctuations are also persistent (though not a random walk)

with an autocorrelation of 0.93.

In future work with the HRS data, we plan to test the validity of previous assumptions

in the literature regarding the evolution of skill differences or skill growth over the lifeycle.

If some of these assumptions are shown to be valid, it would provide additional credibility to

previous studies and further justification for those assumptions when using other data sources

without direct skill measures. We can also make more use of additional test measures (even

those that are non-linear in skills), using our GMM approach to obtain more precise estimates

of skill returns and skill distributions over time. In addition to measuring differences in

average skill levels over time, it is straightforward to estimate changes in the distributions

of skills. For example, we can estimate the distributions of skills for workers choosing to

retire at different ages to better understand selection into retirement. Finally, it is possible

to allow log wage equations to differ by education and/or race, accounting for the fact that

other factors or skills (besides those measured by the cognitive tests in HRS) might play an

important role in wage determination.
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Table 1: Description of Cognitive Measures

Meant to measure Number of values Available years

Word recall Memory 21 (0-20) 1996-2016
Serial 7’s Numeracy 6 (0-5) 1996-2016

Quantitative reasoning Numeracy 5 (0-4) 2002-2016
Retrieval fluency Fluency 91 (0-90) 2010-2016

Table 2: Mean, standard deviation (S.D.), and correlations of cognitive scores and log wages

Number of obs Mean S.D. Correlations

Word recall 35,747 10.31 3.14 1.000
Serial 7’s 35,859 3.94 1.45 0.311 1.000
Quantitative reasoning 11,789 2.07 1.25 0.365 0.494 1.000
Retrieval fluency 6,800 18.46 7.20 0.295 0.285 0.335 1.000
Log hourly wage 20,796 2.73 0.69 0.225 0.220 0.303 0.214 1.000
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Table 3: First Step Estimation (Selected Specifications)

Model τ1(·) τ2(·) Log-likelihood Compared p-value

A. Both εt and θt are normal

1 linear linear -18546.93
2 linear 7th -18500.87 2 vs. 1 0.0000
3 linear 8th -18500.46 3 vs. 2 0.3615
4 quadratic 7th -18498.71 4 vs. 2 0.0374
5 cubic 7th -18497.37 5 vs. 4 0.1021
6 quadratic 8th -18498.15 6 vs. 4 0.2914

B. εt is normal. θt is mixture of two normals.

7 linear linear -18535.97
8 linear 7th -18487.42 8 vs. 7 0.0000
9 linear 8th -18486.80 9 vs. 8 0.2680
10 quadratic 7th -18487.25 10 vs. 8 0.5652

C. Both εt and θt are mixture of two normals

11 linear linear -18504.07
12 linear 7th -18455.07 12 vs. 11 0.0000
13 linear 8th -18454.50 13 vs. 12 0.2871
14 quadratic 7th -18454.92 14 vs. 12 0.5891

Comparing A vs. B vs. C

8 vs. 4 0.0000
12 vs. 8 0.0000

Note: η1 and η2 are normally distributed.
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Table 4: First Step Estimated Parameters

Description Symbol Value Standard Error

Skill Function

Word recall

β1,0 10.38 0.06

β1,1 5.50 0.49

σ2
η1 6.57 0.26

Retrieval fluency

β2,0 18.02 0.56

β2,1 16.94 4.51

β2,2 38.30 35.75

β2,3 -58.50 73.66

β2,4 -312.69 296.94

β2,5 62.05 314.11

β2,6 728.30 693.87

β2,7 426.80 513.29

σ2
η2 36.43 1.66

Serial 7’s

β3,1 3.60 0.34

χ3,1 -2.77 0.11

χ3,2 -1.95 0.14

χ3,3 -1.40 0.15

χ3,4 -0.78 0.15

χ3,5 -0.05 0.15

Quantitative reasoning

β4,1 4.63 0.45

χ4,1 -1.90 0.09

χ4,2 -0.70 0.12

χ4,3 0.53 0.13

χ4,4 1.52 0.14

Skill

pθt,1 0.87 0.17

pθt,2 0.13 0.17

µθt,1 0.06 0.05

µθt,2 -0.42 0.63

σ2
θt,1

0.04 0.01

σ2
θt,2

0.04 0.06

Wage shocks

pεt,1 0.12 0.07

pεt,2 0.88 0.07

µεt,1 0.41 0.13

µεt,2 -0.05 0.04

σ2
εt,1 0.83 0.28

σ2
εt,2 0.27 0.02
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Table 5: GMM Estimation Results (Selected Parameters)

Parameter Full Worker Wage 50-60 Exp 30-40

β1,1 9.936 9.032 9.834 11.844
(0.743) (0.724) (0.802) (1.169)

ρ2 0.861 0.867 0.861 0.861
(0.037) (0.050) (0.037) (0.037)

V ar(ψ) 0.021 0.025 0.021 0.014
(0.007) (0.011) (0.007) (0.005)

Table 6: Average Estimated Skill and Log Wage Residuals by Education/Race (Ages 55-60)

Estimated Skill Estimated Skill Log Wage Residual
(Full) (Workers) (Workers)

A. By Education
Less than HS -0.287 -0.241 -0.414

(0.006) (0.008) (0.015)
HS grad -0.147 -0.121 -0.186

(0.005) (0.006) (0.010)
Some college -0.085 -0.053 -0.035

(0.005) (0.006) (0.012)
College grad 0.002 0.022 0.249

(0.007) (0.007) (0.017)
Above college 0.083 0.089 0.483

(0.006) (0.007) (0.017)

B. By Race
White -0.051 -0.022 0.105

(0.003) (0.004) (0.008)
Non-white -0.203 -0.160 -0.244

(0.005) (0.006) (0.011)

Num. of obs. 14,047 9,064 9,064

Notes: Standard errors in parentheses.
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Figure 1: Estimated Skill Shocks σ2
νt ≡ V ar(νt) by Year
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Figure 2: Estimated V ar(φa,t) by Age for t = 1996
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Figure 3: Estimated V ar(φa,t) by Year
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Figure 4: Estimated Return to Skill (λt) by Year
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Figure 5: α̂a,t Regression Coefficients
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Figure 6: Average Skill Profiles by Cohort
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Appendix A Identification Details

In this appendix, we provide the regularity conditions for the identification result in

Section 2.2. The result is based on Theorem 1 in Hu and Schennach (2008). For completeness

of the arguments, we rewrite all regularity conditions using notation in the current setup.

Suppose that we have two test measures, J = 2, which is the minimum requirement. The

model at (a∗, t∗) can be rewritten as follows:

wi,a∗,t∗ = θi,a∗,t∗ + εi,a∗,t∗

Ti,1,a∗,t∗ = τ1(θi,a∗,t∗) + ηi,1,a∗,t∗

Ti,2,a∗,t∗ = G2 (τ2(θi,a∗,t∗) + ηi,2,a∗,t∗) .

We collect the necessary regularity conditions below:

Assumption 1 The observations (wi,a∗,t∗ , Ti,1,a∗,t∗ , Ti,2,a∗,t∗) generated from the model above

satisfy the following conditions:

i. The joint density of (θi,a∗,t∗ , wi,a∗,t∗ , Ti,1,a∗,t∗ , Ti,2,a∗,t∗) is bounded, and so are all their

marginal and conditional densities. Furthermore, the joint density of (θi,a∗,t∗ , wi,a∗,t∗ , Ti,1,a∗,t∗)

is continuous, and so are all their marginal and conditional densities.

ii. The random variables wi,a∗,t∗, Ti,1,a∗,t∗, and Ti,2,a∗,t∗ are mutually independent condi-

tional on θi,a∗,t∗.

iii. The conditional density functions fwi,a∗,t∗ |Ti,1,a∗,t∗ (w|t) and fθi,a∗,t∗ |wi,a∗,t∗ (θ|w) form a

bounded complete family of distributions indexed by t and w, respectively.

iv. For all θ1, θ2 ∈ Θ, the set {t2 : fTi,2,a∗,t∗ |θi,a∗,t∗ (t2|θ1) 6= fTi,2,a∗,t∗ |θi,a∗,t∗ (t2|θ2)} has positive

probability whenever θ1 6= θ2.

v. We normalize that E[wi,a∗,t∗|θi,a∗,t∗ ] = θi,a∗,t∗ and that E[εi,a∗,t∗|θi,a∗,t∗ ] = E[ηi,1,a∗,t∗|θi,a∗,t∗ ] =

E[ηi,2,a∗,t∗|θi,a∗,t∗ ] = 0.

Condition (i) is a mild restriction on the distribution and allows Ti,2,a∗,t∗ to be discrete.

Conditions (ii), (iv), and (v) are immediately satisfied from the model construction. For
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example, the strict monotonicity of τ2(·) implies condition (iv). The completeness assumption

in condition (iii) is widely used in the nonparametric identification literature and is satisfied

in many classes of distributions, e.g. the exponential family. See, Hu and Schennach (2008)

for further discussions on the completeness assumption.

Under Assumption 1, Theorem 1 in Hu and Schennach (2008) holds, and we can identify

the joint and conditional densities fT2,a∗,t∗ ,θa∗,t∗ (·, ·), fwa∗,t∗ |θa∗,t∗ (·|·), and fT1,a∗,t∗,|θa∗,t∗ (·|·)
from Equation (6) therein. The measurement function τ1(·) is the conditional mean function

of T1,a∗,t∗ given θa∗,t∗ and can be identified by

τ1(θ) = E[T1,a∗,t∗|θ] =

∫
t1fT1,a∗,t∗ |θa∗,t∗ (t1|θ)dt1.

The marginal density fθa∗,t∗ (·) is identified by integrating the joint density:

fθa∗,t∗ (θ) =

∫
fT2,a∗,t∗ ,θa∗,t∗ (t2, θ)dt2.

Finally, the marginal densities fεa∗,t∗ (·) and fη1,a∗,t∗ (·) are identified by the standard decon-

volution method:

ϕεa∗,t∗ (t) = ϕwa∗,t∗ (t)/ϕθa∗,t∗ (t)

ϕη1,a∗,t∗ (t) = ϕT1,a∗,t∗ (t)/ϕτ1(θa∗,t∗ )(t),

where ϕx(·) denotes the characteristic function of x.
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Appendix B Step 1 Estimation

Derivation of Equation (4):

fwa∗,t∗ ,T1,a∗,t∗ ,...,TJ,a∗,t∗ (w, T1, . . . , TJ)

=

∫
Θ

fwa∗,t∗ ,T1,a∗,t∗ ,...,TJ,a∗,t∗ ,θa∗,t∗ (w, T1, . . . , TJ , θ)dθ

=

∫
Θ

fwa∗,t∗ |T1,a∗,t∗ ,...,TJ,a∗,t∗ ,θa∗,t∗ (w|T1, . . . , TJ , θ)

× fT1,a∗,t∗ |T2,a∗,t∗ ,...,TJ,a∗,t∗ ,θa∗,t∗ (T1|T2, . . . , TJ , θ)× · · · × fTJ,a∗,t∗ |θa∗,t∗ (TJ |θ)fθa∗,t∗ (θ)dθ

=

∫
Θ

fwa∗,t∗ |θa∗,t∗ (w|θ)fT1,a∗,t∗ |θa∗,t∗ (T1|θ)× · · · × fTJ,a∗,t∗ |θa∗,t∗ (TJ |θ)fθa∗,t∗ (θ)dθ

=

∫
Θ

fεa∗,t∗ |θa∗,t∗ (ε|θ)fη1,a∗,t∗ |θa∗,t∗ (η1|θ)× · · · × fηJ,a∗,t∗ |θa∗,t∗ (ηJ |θ)fθa∗,t∗ (θ)dθ

=

∫
Θ

fεa∗,t∗ (w − θ;βεa∗,t∗ )

× fη1,a∗,t∗ (T1 − τ1(θ;βτ1);βη1,a∗,t∗ )× · · · × fηJ,a∗,t∗ (TJ − τJ(θ;βτJ );βηJ,a∗,t∗ )fθa∗,t∗ (θ;βθa∗,t∗ )dθ.

Consider mixtures of normal distributions for the distributions of εa∗,t∗ , ηj,a∗,t∗ of contin-

uous measure, and θa∗,t∗ :

fεa∗,t∗ (w − θ;βεa∗,t∗ ) =
∑
nε

pεa∗,t∗ ,nε
1√

2πσ2
εa∗,t∗ ,nε

exp

(
−

(w − θ − µεa∗,t∗ ,nε)2

2σ2
εa∗,t∗ ,nε

)
,

fηj,a∗,t∗ (Tj − τj(θ;βτj);βηj,a∗,t∗ )

=
∑
nηj

pηj,a∗,t∗ ,nηj
1√

2πσ2
ηj,a∗,t∗ ,nηj

exp

(
−

(Tj − τ j(θ;βτj)− µηj,a∗,t∗ ,nηj )
2

2σ2
ηj,a∗,t∗ ,nηj

)
,

fθa∗,t∗ (θ;βθa∗,t∗ ) =
∑
nθ

pθa∗,t∗ ,nθ
1√

2πσ2
θa∗,t∗ ,nθ

exp

(
−

(θ − µθa∗,t∗ ,nθ)2

2σ2
θa∗,t∗ ,nθ

)
,

where βx := (px,nx , µx,nx , σx,nx) and
∑

nx
px,nx = 1 for x = εa∗,t∗ , ηj,a∗,t∗ , and θa∗,t∗ .

28 Note

that the location restriction (i.e. E[x] = 0) implies that
∑

nx
px,nxµx,nx = 0.

28For expositional purposes, we assume that the number of distributions for each random variable mixture
(i.e. nε, nηj , and nθ) do not vary with age and time.
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If the test measure Tj is discrete, we assume that it is generated from an ordered probit

model. Suppose it has Kj discrete values: Tj ∈ {1, ..., Kj}. We need to estimate Kj − 1

cutoff values for the ordered probit, i.e., χj := (χj,1, χj,2, ..., χj,Kj−1). The density function

is:

fηj,a∗,t∗ (Tj − τj(θ;βτj);χj) =

Kj∑
k=1

1(Tj = k)
[
Φ
(
χj,k − τj(θ;βτj)

)
− Φ

(
χj,k−1 − τj(θ;βτj)

)]
,

with χj,0 = −∞ and χj,Kj =∞. Φ(·) is the cdf of the standard normal distribution.

Since we have 4 measures: two are continuous (T1 and T2) and two are discrete (T3 and

T4), the log-likelihood for individual i at age a∗ in year t∗ is:

`i,a∗,t∗ = log

∫ ∞
−∞

∑
nε

pεa∗,t∗ ,nε
1√

2πσ2
εa∗,t∗ ,nε

exp

(
−

(wi,a∗,t∗ − θ − µεa∗,t∗ ,nε)2

2σ2
εa∗,t∗ ,nε

)
×

∑
nη1

pη1,a∗,t∗ ,nη1
1√

2πσ2
η1,a∗,t∗ ,nη1

exp

(
−

(Ti,1,a∗,t∗ − τ1(θ;βτ1)− µη1,a∗,t∗ ,nη1 )2

2σ2
η1,a∗,t∗ ,nη1

)
×

∑
nη2

pη2,a∗,t∗ ,nη2
1√

2πσ2
η2,a∗,t∗ ,nη2

exp

(
−

(Ti,2,a∗,t∗ − τ2(θ;βτ2)− µη2,a∗,t∗ ,nη2 )2

2σ2
η2,a∗,t∗ ,nη2

)
×
[ K3∑
k3=1

1(Ti,3,a∗,t∗ = k3) [Φ (χ3,k3 − τ3(θ;βτ3))− Φ (χ3,k3−1 − τ3(θ;βτ3))]

]

×
[ K4∑
k4=1

1(Ti,4,a∗,t∗ = k4) [Φ (χ4,k4 − τ4(θ;βτ4))− Φ (χ4,k4−1 − τ4(θ;βτ4))]

]

×

∑
nθ

pθa∗,t∗ ,nθ
1√

2πσ2
θa∗,t∗ ,nθ

exp

(
−

(θ − µθa∗,t∗ ,nθ)2

2σ2
θa∗,t∗ ,nθ

) dθ
= log

∑
nε,nη1 ,nη2 ,k3,k4,nθ

pεa∗,t∗ ,nεpη1,a∗,t∗ ,nη1pη2,a∗,t∗ ,nη2pθa∗,t∗ ,nθ

× 1√
24π4

(
σεa∗,t∗ ,nεση1,a∗,t∗ ,nη1ση2,a∗,t∗ ,nη2σθa∗,t∗ ,nθ

)2

× 1(Ti,3,a∗,t∗ = k3)× 1(Ti,4,a∗,t∗ = k4)

×
∫ ∞
−∞

exp

(
−

(wi,a∗,t∗ − θ − µεa∗,t∗ ,nε)2

2σ2
εa∗,t∗ ,nε

−
(Ti,1,a∗,t∗ − τ1(θ;βτ1)− µη1,a∗,t∗ ,nη1 )2

2σ2
η1,a∗,t∗ ,nη1
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−
(Ti,2,a∗,t∗ − τ2(θ;βτ2)− µη2,a∗,t∗ ,nη2 )2

2σ2
η2,a∗,t∗ ,nη2

−
(θ − µθa∗,t∗ ,nθ)2

2σ2
θa∗,t∗ ,nθ

)
×
[
Φ (χ3,k3 − τ3(θ;βτ3))− Φ

(
χ3,k3−1 − τ 3(θ;βτ3)

) ]
×
[
Φ (χ4,k4 − τ4(θ;βτ4))− Φ

(
χ4,k4−1 − τ 4(θ;βτ4)

) ]
dθ.

βa∗,t∗ is estimated by maximizing the log-likelihood function:

β̂a∗,t∗ = arg max
βa∗,t∗∈B

1

|Ic∗ |
∑
i∈Ic∗

`i,a∗,t∗ .

Standard Errors

Define the score of the log-likelihood for observation i as follows:

Ŝi,a∗,t∗ = Si,a∗,t∗(β̂a∗,t∗) =
∂`i,a∗,t∗(β̂a∗,t∗)

∂β>a∗,t∗
,

and the Hessian:

Ĥi,a∗,t∗ = Hi,a∗,t∗(β̂a∗,t∗) =
∂2`i,a∗,t∗(β̂a∗,t∗)

∂β>a∗,t∗∂βa∗,t∗
.

The asymptotic variance matrix is:

V̂ML,a∗,t∗ =

∑
i∈Ic∗

Ĥi,a∗,t∗

−1∑
i∈Ic∗

Ŝi,a∗,t∗Ŝ
>
i,a∗,t∗

∑
i∈Ic∗

Ĥi,a∗,t∗

−1

.

Appendix C GMM Estimation with a Linear Measure

Let Λ be a vector of parameters to be estimated in the second stage. We use the

generalized methods of moments (GMM) to estimate Λ. Suppose the total number of co-

variances is M and let m = 1, ...,M be the index of the covariances. Define the theoretical

covariance vector as h(Λ) = (h1(Λ), ..., hM(Λ))>. Let di,m be the indicator of whether in-

dividual i contributes to the mth covariance. Then we can write individual i’s contribution

to the mth moment as gm(zi,Λ) where zi includes di,m, individual i’s log wage residu-

als, and cognitive measures. gm(zi,Λ) is equal to di,m times the difference between the
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product of corresponding de-meaned variables and the theoretical covariance. For exam-

ple, individual i’s contribution to the moment involving covariance Cov(wa,t, Tj,a+k,t+k) is

gm(zi,Λ) = di,m
[
(wi,a,t − w̄a,t)(Ti,j,a+k,t+k − T̄j,a+k,t+k)− hm(Λ)

]
.

Let g(z,Λ) = (g1(z,Λ), ..., gM(z,Λ))>. Then the following moment condition holds at

the true parameter Λ0:

E
[
g(z,Λ0)

]
= 0.

The GMM estimator Λ̂ solves

min
Λ

[
1

N

N∑
i=1

g(zi,Λ)

]>
W

[
1

N

N∑
i=1

g(zi,Λ)

]
,

where W is the weighting matrix.

Standard Errors

The GMM estimator Λ̂ is asymptotically normal with a variance matrix

VGMM = (G>WG)−1(G>WΩWG)(G>WG)−1/N,

whereG is the Jacobian of the vector of moments, E[∂g(z,Λ0)/∂Λ>0 ], and Ω = E[g(z,Λ0)g(z,Λ0)>].

To calculate the asymptotic variance matrix, both expectations are replace by sample aver-

ages and evaluated at the estimated parameters:

Ĝ =
1

N

N∑
i=1

∂g(zi, Λ̂)

∂Λ>
= −W− 1

2
∂h(Λ̂)

∂Λ>
,

Ω̂ =
1

N

N∑
i=1

g(zi, Λ̂)g(zi, Λ̂)>.

We can test r linear parameter restrictions H0 : RΛ = 0 using Wald test statistic:

(RΛ̂)>(RV̂GMMR)−1(RΛ̂)
d−→ χ2

r.

Appendix D Data

D.1 Cognitive Measures

Details on the construction of the four cognitive measures are as follows:
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- Word recall. In the data, there are two separate tasks to assess respondent’s memory:

one is immediate word recall and the other is delayed word recall. During the interview,

the interviewer read a list of 10 nouns to the respondent and asked the respondent to

recall as many words as possible from the list in any order. After approximately 5

minutes of answering other survey questions, the respondent was asked to recall the

nouns previously presented. We construct a single measure which is the sum of the

number of nouns that the respondent recalled in the two tasks. This measure ranges

from 0 to 20.

- Serial 7’s. This test asks the respondent to subtract 7 from the prior number, beginning

with 100 for five trials. Correct subtractions are based on the prior number given, so

that even if one subtraction is incorrect subsequent trials are evaluated on the given

(perhaps wrong) answer. This test score ranges from 0 to 5.

- Quantitative reasoning. In HRS 2002, three questions were added to the core survey

to assess respondents’ numerical ability:

1. “Next I would like to ask you some questions which assess how people use numbers

in everyday life. If the chance of getting a disease is 10 percent, how many people

out of 1,000 would be expected to get the disease?”

2. “If 5 people all have the winning numbers in the lottery and the prize is two

million dollars, how much will each of them get?”

3. “Let’s say you have $200 in a savings account. The account earns ten percent

interest per year. How much would you have in the account at the end of two

years?”

We construct a single measure called quantitative reasoning using the answers from

these three questions. For the first two questions, the respondent gets 1 if the answer

is correct and 0 otherwise. For the last question, the respondent gets 2 if the answer is

correct. If the respondent used 10% as a simple interest rate rather than a compound

interest rate, i.e., answered 240 instead of 242, he gets 1. The quantitative reasoning

measure is the sum of scores of all three questions and it ranges from 0 to 4.
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- Retrieval fluency. This task was first incorporated in the HRS in the 2010 wave. During

this task, respondents were asked to name as many animals as they could withing a

60-second time limit. The retrieval fluency measure is constructed as the number of

total animal answered minus the number of incorrect names. The value of this measure

ranges from 0 to 90.

D.2 Age

The age variable we use is the age at the end of the interview. According to the HRS, when

there are different beginning and ending interview dates, most of the interview is usually

conducted on the ending date. So it is recommended to use age at the end of interview date

for respondent age at each interview.

The interval between interviews is usually 2 years. But about 5-10% of the sample was

interviewed a year later than the wave year. For example, the normal case would be someone

at age 52 interviewed in 1998 and age 54 interviewed in 2000. But it could be the case that

he was interviewed in 2001 for the second interview at age 55. Another case could be he was

aged 53 when interviewed in 1999 and aged 54 when interviewed in 2000. In these cases,

we assume that age at the first interview is the age at that wave year and the subsequent

interviews are two years apart. So for the first case, the wages we observe are wa=52,t=1998

and wa=55,t=2001 and we assume they are wa=52,t=1998 and wa=54,t=2000. For the second case,

we observe wa=53,t=1999 and wa=54,t=2000 and we assume they are wa=53,t=1998 and wa=55,t=2000.

Another approach is to use the birth year to calculate age at each wave year. Then we

would assume that we observe wa=52,t=1998 and wa=54,t=2000 for both the first and second cases.

The results are quite similar and do not drive any particular patterns using this alternative

approach.
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